
The Loko Scheme Developer’s Manual

Gwen Weinholt

This manual is for Loko Scheme 0.12.1, an optimizing Scheme compiler.

Copyright c© 2019-2022 Gwen Weinholt

Licensed under the EUPL version 1.2 or later.

i

Table of Contents

Preface . 1
Purpose, audience and scope . 1
Credits . 1
How to License Loko Scheme . 2

1 Introduction . 5
1.1 Scheme . 5
1.2 Scheme standards . 6
1.3 Where Loko fits in . 6

2 Using Loko . 9
2.1 Building Loko . 9

2.1.1 Cross-compiling . 9
2.1.2 Loko from a distribution . 9

2.2 Running . 10
2.2.1 Running under Linux or NetBSD . 10
2.2.2 Running under KVM (QEMU) . 10
2.2.3 Running on bare metal . 11

2.2.3.1 Network booting . 11
2.2.4 Running in Docker . 12

2.3 Compiling a program . 12

3 Library reference . 13
3.1 Standard libraries . 13

3.1.1 SRFI implementations . 13
3.2 Base library . 13
3.3 Apropos . 18
3.4 Fibers . 18
3.5 Unsafe procedures . 20
3.6 Target libraries . 22

4 Repair instructions . 23
4.1 Tools support . 23

4.1.1 Disassembly . 23
4.1.2 Debugging . 23
4.1.3 Debug logs . 23
4.1.4 Profiling . 23
4.1.5 Memory checking . 24
4.1.6 Fuzzing . 24

ii

5 Other resources . 25
5.1 Loko Scheme website . 25
5.2 Online communities . 25
5.3 Issue tracker . 25
5.4 Package repositories . 25

6 Loko internals . 27
6.1 Concurrency . 27

6.1.1 Why fibers are not preemptible . 28
6.1.2 Loko processes . 28

6.2 Drivers . 29
6.2.1 Driver abstractions . 29
6.2.2 Hardware access . 29
6.2.3 Future directions for drivers . 30

6.3 Interrupt handling . 31
6.3.1 Historical background . 31
6.3.2 An experimental approach to IRQs . 32
6.3.3 Loko’s use of traps . 33
6.3.4 Interrupts on bare hardware AMD64 . 33

6.3.4.1 Traps . 33
6.3.4.2 IRQs . 33
6.3.4.3 Observed bad IRQ behavior . 34

6.3.5 Interrupts on Linux AMD64 . 35

Index . 37

1

Preface

I’ve been writing Scheme code for some time now. While doing so I was also working on
Scheme implementations. This is the first one that seems to have come out okay.

Gwen Weinholt, 2019

Purpose, audience and scope

This manual has two major parts: usage and internals. The first part is intended to let the
developer start using Loko to write useful software. The second part goes into details on
how Loko works and why things are the way they are.

Some knowledge of Scheme is assumed for the usage part. The reader who has no prior
knowledge of any Lisp dialect will initially find it difficult to parse the language.

This is not a complete description of the Scheme language. The reader who wants a
more detailed description of Scheme may want to read The Scheme Programming Language
(https://www.scheme.com/tspl4/) (TSPL) by R. Kent Dybvig. The language described
in that book is the same language that you can use in Loko Scheme.

This manual is also not a replacement for comments and descriptions in the code. Loko
Scheme is not meant to be a closed box; you are supposed to open it up and look at the
parts. Maybe even fix some to suit your situation. Loko Scheme needs its own source code
to compile your programs, so every installation should come with source code.

Credits

Many have brought ideas, techniques and instructions to fruition that later went into making
Loko Scheme. It would not be what it is without their contributions to science.

The syntax-case implementation is from r6rs-libraries by Abdulaziz Ghuloum and R.
Kent Dybvig, with bug fixes and improvements from Llewellyn Pritchard.

The high-level optimizer cp0 is based on the chapter Fast and Effective Procedure Inte-
gration from Extending the Scope of Syntactic Abstraction by Oscar Waddell (Ph.D. thesis).

The low-level optimizer is based on concepts taught in a course given by David Whalley
in 2011.

The register allocator, except for the bugs, is from Register Allocation via Graph Coloring
by Preston Briggs (Ph.D. thesis).

The letrec handling is from Fixing Letrec (reloaded) by Abdulaziz Ghuloum and R. Kent
Dybvig.

The Unicode algorithms are also by Abdulaziz Ghuloum and R. Kent Dybvig.

The bignum algorithms are based on algorithms from BigNum Math by Tom St Denis.

The list? procedure uses Olin Shiver’s version of Robert W. Floyd’s cycle-finding al-
gorithm.

The equal? procedure is from the paper Efficient Nondestructive Equality Checking for
Trees and Graphs by Michael D. Adams and R. Kent Dybvig.

Some intricate parts of the records implementation are from the reference implementation
of SRFI-76 by Michael Sperber.

https://www.scheme.com/tspl4/
https://www.scheme.com/tspl4/

2 The Loko Scheme Developer’s Manual

The optimization of procedural records is based on the paper A Sufficiently Smart Com-
piler for Procedural Records by Andy Keep and R. Kent Dybvig. It’s not as good, but it’s
something.

The list sorting code is from SLIB, was written Richard A. O’Keefe and is based on
Prolog code by David H. D. Warren.

The dynamic-wind code is from SLIB and was written by Aubrey Jaffer.

The division magic, and many other wonderful hacks, is from the excellent book Hacker’s
Delight by Henry S. Warren, Jr., with foreword by one Guy L. Steele, Jr.!

The fibers library is loosely based on Parallel Concurrent ML by John Reppy, Claudio
V. Russo and Yingqi Xiao. The API is based on Guile fibers by Andy Wingo and the
implementation is closely related to his blog post a new concurrent ml.

The implementation of multiple values is based on An Efficient Implementation of Mul-
tiple Return Values in Scheme by J. Michael Ashley and R. Kent Dybvig. Advice contained
wherein not heeded.

The R7RS-small standard library is based on code originally written by OKUMURA
Yuki for the Yuni project.

The floating point to string conversion is based on Bob Burger’s code described in the
paper Printing Floating-Point Numbers Quickly and Accurately. Any bugs are our own.

The pretty printer comes from Marc Feeley’s implementation written way back in 1991.

Thanks also to Abdulaziz Ghuloum for An Incremental Approach to Compiler Construc-
tion, which helped me consolidate the Scheme compiler experience I had already accumu-
lated through experimentation.

How to License Loko Scheme

Loko Scheme is copyrighted software. The default legal state of software is that no rights
are granted. However, Loko Scheme is licensed under a free software licence. This licence
grants many permissions, but they are conditional on following the terms of the licence.

• Loko Scheme is licensed under EUPL-1.2-or-later (https://joinup.ec.europa.eu/
collection/eupl/eupl-text-eupl-12). See the file LICENSE in the source code tree.
If you haven’t already, please go and read it. It’s fairly short, easy to read, and available
in many languages. The following points provide some guidance and explanations for
your consideration, but they don’t override the licence or any case law around it.

• The EUPL covers “software as a service” (SaaS) and other types of communicating
Loko Scheme to the public. So if you make Loko Scheme available online as a compiler
(e.g. like the Compiler Explorer at godbolt.org does with many other compilers) then
that’s the same as if you were giving your users a copy of the binary. Since the EUPL
is a copyleft licence you then also need to provide the source. But this is limited to
the “essential functionalities”. Some possible scenarios where you have to give out the
Loko Scheme source over the network is when you’re using Loko Scheme as a compiler
provided over the network, or if you’re using the kernel functionality to provide a hosted
execution environment.

• Programs compiled by Loko Scheme contain parts of Loko Scheme’s runtime. The
EUPL lets you combine Loko Scheme’s runtime with your own program. See the

https://joinup.ec.europa.eu/collection/eupl/eupl-text-eupl-12
https://joinup.ec.europa.eu/collection/eupl/eupl-text-eupl-12

Preface 3

article Why viral licensing is a ghost (https://joinup.ec.europa.eu/collection/
eupl/news/why-viral-licensing-ghost) for more details on this. This means that
your program as a whole does not become licensed under the EUPL just because
it was compiled with Loko Scheme; only those parts which were already under the
EUPL. If it is your own program that you’re compiling (even a commercial and pro-
prietary program) then that is no problem. If the program is using another copy-
left licence then there is potentially a problem if that other copyleft licence does
not allow the combination with the EUPL. But the EUPL is designed to be com-
patible with several copyleft licenses, so it might still be okay. You can use the
Joinup Licensing Assistant (https://joinup.ec.europa.eu/collection/eupl/
solution/joinup-licensing-assistant/jla-compatibility-checker) to check if
you can combine Loko Scheme’s runtime with that other work.

• If you’re going to distribute Loko Scheme (or a program compiled with Loko Scheme)
then note in particular the obligations of the licensee in § 5. If you distribute binaries
built with Loko Scheme then you can’t remove the notices from the binary. When you
distribute a binary of a work compiled with Loko Scheme then you are also distributing
parts of Loko Scheme. So when someone receives a copy of that binary then they have
the right to get your modified copy of Loko Scheme, according to the terms of the
EUPL. But as per the previous point above, this does not affect your own code that is
in that binary.

• Previous releases of Loko Scheme were under the GNU Affero General Public License
(AGPL). This meant that the AGPL covered the Scheme runtime in the binaries that
were generated by those versions, which then covered the whole binary. This severely
limited the usefulness of Loko Scheme. To get around this problem it would have been
necessary to formulate an exception to the license, but this proved to be very difficult
in practice. The EUPL gets around this problem.

• The files under the srfi directory are published under the terms of the MIT license. This
license is conventional for SRFI implementations and makes it easier to adapt them for
use with other Scheme implementations, which you are encouraged to do. Just don’t
remove the copyright and licence notices.

The source code is automatically checked against the REUSE specification (https://
reuse.software/spec/).

https://joinup.ec.europa.eu/collection/eupl/news/why-viral-licensing-ghost
https://joinup.ec.europa.eu/collection/eupl/news/why-viral-licensing-ghost
https://joinup.ec.europa.eu/collection/eupl/solution/joinup-licensing-assistant/jla-compatibility-checker
https://joinup.ec.europa.eu/collection/eupl/solution/joinup-licensing-assistant/jla-compatibility-checker
https://joinup.ec.europa.eu/collection/eupl/solution/joinup-licensing-assistant/jla-compatibility-checker
https://reuse.software/spec/
https://reuse.software/spec/

5

1 Introduction

1.1 Scheme

Scheme is a dialect of the Lisp programming language invented by Guy Lewis Steele Jr.
and Gerald Jay Sussman in the mid 1970s. The first Lisp language was LISP, which was
created by John McCarthy in the second half of the 1950s.

Lisp’s syntax uses S-expressions, which were created by McCarthy to represent LISP
functions as data in his eval function (published in 1960). Eval is a one-page universal
LISP function capable of running any other LISP function. The first LISP interpreter was
created when Steve Russell compiled the eval function by hand.

Today many languages offer a large subset of the features of Lisp, and some attempt
to offer those of Scheme as well. S-expressions are not added because it would turn those
languages into Lisps.

Distinctive features of Lisp languages are dynamic typing, garbage collection, and S-
expressions (“symbolic expressions”). Scheme adds some additional distinctive features on
top of those: static scoping, proper tail-recursion, hygienic macros, full continuations and
dynamic-wind.

• Dynamic typing means that the programmer does not need to prove to the compiler
that a program is well-typed. This is beneficial because there are true statements about
programs that are impossible to prove except by running the programs.

• Garbage collection is the automatic reclamation of unused memory. This is beneficial
because there are programs that are impossible to write without it.

• S-expressions provide a convenient means to represent code as data, in a format that
the Lisp programmer is used to working with, which enables automatic transformations
via macros and dynamic evaluation through eval. This is beneficial because there are
programs that are impossible to write without dynamic code evaluation. It also relieves
the programmer of having to guess how the parser will pick apart the code.

• Static scoping means that variable usage is connected with the binding of the variable
as it appears in the text of the program. This is standard in most languages today,
but Scheme is one of the few languages that gets this consistently right. (Dynamic
scoping is available if needed through dynamic-wind, because there are some programs
that cannot be written without it).

• Proper tail-recursion provides a guarantee that when a procedure call appears in a tail
context (such as in the final expression of a procedure) no extra stack frame is used.
This is beneficial because there are programs that cannot be written without proper
tail-recursion.

• Hygienic macros means that a library can provide extensions to the Scheme syntax
that are indistinguishable from built-in Scheme syntax, and hygiene means that these
macros do not accidentally break static scoping. Less powerful macro systems are prone
to the insertion of variables that conflict with those already used in the programs.

• (Continuations are usually explained in hopelessly abstract terms, so I will be very
concrete here). Continuations are copies of the stack and the state associated with
dynamic-wind. Many languages provide a way to escape upwards in the stack (e.g.

6 The Loko Scheme Developer’s Manual

longjmp or exceptions), but continuations also lets programs restore the stack to what
it looked like when the continuation was captured. Imagine throwing an exception,
thereby going up the stack, and then having the exception handler fix the problem
and then go back down the stack to resume. Scheme is also unusual in that it lets
continuations be reinstated multiple times. Continuations are useful because there are
programs that cannot be written without them. Any control structure can be expressed
with them, even those not built in to the language.

• Dynamic-wind provides a means to run code when a part of the program is entered
and then when it is exited. Continuations means that it can happen multiple times.
This feature is useful because there are programs that cannot be written without it.

The features described above can be simulated in languages that lack them. Tail-
recursion can be implemented manually by simulating a stack with a list, dynamic typing
can be implemented with an abstract data type and type dispatching, garbage collection
can be implemented for a data structure, and continuations can be implemented manually
with continuation-passing style.

Such simulations are always possible in the sense that any Turing-complete language can
implement any other Turing-complete language. But these simulations will not exist on the
same level as the host language and are therefore of an inferior nature.

1.2 Scheme standards

Scheme is standardized through two different types of documents. The first are called the
Revisedn Reports on the Algorithmic Language Scheme (RnRS). R5RS came out in 1998
and was followed by R6RS in 2007. R5RS was also followed by R7RS, which came out in
2013. Both of them are successors to R5RS.

The second type of documents are called Scheme Requests For Implementation (SRFI).
This is a community-driven process whereby new language features can be developed and
suggested for implementations to use. Many of them are mostly portable code, while other
ones require adaptions to each Scheme implementation that wants to support them.

1.3 Where Loko fits in

Scheme has many implementations. Every known way to implement a programming lan-
guage has probably been tried with Scheme. There are Scheme implementations for basically
all operating systems and all types of machines. There have even been Scheme CPUs. Some
say there are more implementations than applications. And Loko Scheme is one of those
implementations.

Every Scheme implementation has something that makes it unique. This is what is
peculiar about Loko:

• Loko runs on bare metal (and on top regular Unix kernels).

• Loko builds statically linked binaries.

• Loko is written in only Scheme and a small amount of assembly.

• Loko’s ABI is incompatible with C and does not use it on any level.

• Loko’s runtime uses concurrency based on Concurrent ML.

• Loko supports both R6RS and R7RS libraries and programs.

Chapter 1: Introduction 7

• Loko provides the safety guarantees of R6RS even for R7RS code.

• Loko uses the hardware for free type checking (branchless car, etc).

Due to some of the above, Loko Scheme is not suitable for every use case. There are
plenty of other Scheme implementations available if Loko Scheme cannot work for your
application.

9

2 Using Loko

2.1 Building Loko

Download a release tarball from https://scheme.fail or clone the git repository: git

clone https://scheme.fail/git/loko.git/. Release tarballs, git commits and tags are
signed with the OpenPGP key 0xE33E61A2E9B8C3A2.

The release tarball has everything needed for building Loko Scheme from GNU/Linux.
It comes with the required Akku packages and a pre-built binary.

• (Optional if you have the release tarball).

Loko Scheme needs an R6RS Scheme implementation for bootstrapping. It can cur-
rently be bootstrapped with Chez Scheme.

Install Chez Scheme (https://cisco.github.io/ChezScheme/), version 9.5 or later,
as a bootstrap compiler.

• (Optional if you have the release tarball, but highly recommended and required for the
samples).

Install the package manager Akku.scm (https://akkuscm.org), version 1.0.0 or later.

• Run make to compile Loko. GNU make is required.

• Install with make install.

• (Optional) Build and install the manual with make install-info.

The binaries tend toward being reproducible. There are some minor differences between
the results from Chez Scheme and Loko Scheme due to different gensym implementations.
This is fixable.

If you’re building from Git and pull in updates, then it will at certain points be necessary
to rebootstrap. This can be done with make rebootstrap, but it’s a bit impractical at
the moment due to the number of commits that require a rebootstrap. A simpler way is
to remove the loko-prebuilt binary and bootstrap again from Chez Scheme (but that’s
cheating).

2.1.1 Cross-compiling

Loko Scheme can run on NetBSD/amd64 and you can get such a binary by
cross-compilation.

Ensure that you have a working loko-prebuilt binary, e.g. by using the bootstrap
target, or copy a working loko binary. Remove config.sls and uncomment the lines in the
makefile for your target environment. (You can also pass them as arguments to make).
Build the loko target as usual. You should now have a working binary for the target
environment.

2.1.2 Loko from a distribution

If you are using Arch Linux then Loko should be available in AUR.

(Please get in touch if you’re packaging Loko for a distribution so your package can
appear here).

https://scheme.fail
https://cisco.github.io/ChezScheme/
https://akkuscm.org

10 The Loko Scheme Developer’s Manual

2.2 Running

Loko Scheme runs either under an existing operating system kernel (currently Linux and
NetBSD), under a hardware virtual machine or directly on bare hardware.

2.2.1 Running under Linux or NetBSD

The loko binary is a statically linked ELF binary that the kernel can load directly.

Loko doesn’t come with a built-in line editor. It is convenient to use rlwrap when running
Loko: rlwrap loko. The rlwrap program adds readline on top of any program, providing
line editing and history.

Loko uses the environment variable LOKO_LIBRARY_PATH to find libraries. This is a
colon-separated list of directories. If you’re using the package manager Akku then this
variable is set when you active your project environment. The default list of file extensions
are .loko.sls, .sls and .sld. They can be changed by setting LOKO_LIBRARY_FILE_

EXTENSIONS.

R6RS top-level programs can be run from the command line with loko --program

program.sps.

The loko binary is also meant to be installed under the name scheme-script. If it
is invoked with this name it will load a Scheme script, as described in the non-normative
R6RS appendix. It is often used like this:

#!/usr/bin/env scheme-script

(import (rnrs))

(display "Hello, world!\n")

By marking such a file executable the system will hand it over to scheme-script, which
will then run it as a Scheme top-level program. But the name scheme-script is usually
handled by the alternatives system, so it could be another Scheme that runs the script.

Such scripts can also be compiled to static binaries that can be run directly. See Sec-
tion 2.3 [Compilation], page 12.

2.2.2 Running under KVM (QEMU)

To get a repl on the serial port:

qemu-system-x86_64 -enable-kvm -kernel loko -m 1024 -serial stdio

There is no echo or line editing, but it works alright as an inferior Scheme for Emacs.
You can also try rlwrap -a.

If you create a script with this command then you can easily run it as an "Inferior
Scheme" in e.g. Emacs. There are some additional options you can try:

• Add files to /boot using -initrd filename1,filename2,etc.

• Set environment variables with e.g. -append LOKO_LIBRARY_PATH=/boot.

• Pass command line arguments in -append by adding them after --, e.g. -append

'VAR=abc -- --program foo.sps'.

See the samples directory in the source distribution for more examples.

Chapter 2: Using Loko 11

2.2.3 Running on bare metal

Loko on bare metal does not yet come with an adequate user interface. There is rudimentary
log output to the text console during boot. This can be redirected, see Section 4.1.3 [Debug
logs], page 23.

The first user process will be attached to the COM1 serial port (115200, 8n1). This
is adequate for development until there is networking support. The loko program’s first
process is a repl, but if you compile a program then it will be your top-level program.

The loko binary should work with any Multiboot boot loader, such as GRUB 2. See
the menu entry examples below.

2.2.3.1 Network booting

Network booting is possible if your hardware supports it. It has been tested with GRUB 2
and should also be possible with PXELINUX.

You will need to add an entry in the network’s DHCP server and you need a computer
where you can install a TFTP server such as tftpd-hpa.

• After installing the TFTP server, create a network directory with GRUB:

grub-mknetdir --net-directory /tftpboot

The TFTP server might be serving up another directory such as /srv/tftp.

• Create a configuration in /tftpboot/boot/grub/grub.cfg with an entry for Loko,
such as this:

menuentry "Loko Scheme" {

multiboot /loko loko

}

You can also include files that will be available in /boot:

menuentry "Loko Scheme with foo library" {

multiboot /loko loko LOKO_LIBRARY_PATH=/boot

module /foo.sls foo.sls

}

Or start a program in the interpreter:

menuentry "Hello world" {

multiboot /loko loko -- --program /boot/hello.sps

module /hello.sps hello.sps

}

• Copy the Loko binary to the /tftpboot directory.

• Add an entry in the DHCP server. It can look like this if you’re using ISC dhcpd:

host darkstar {

hardware ethernet 00:11:22:33:44:55;

filename "boot/grub/i386-pc/core.0";

next-server 192.168.0.2;

}

The hardware address must be changed to match the interface used for network booting
(the machine that will run Loko). The server address is the address of the TFTP server.

12 The Loko Scheme Developer’s Manual

2.2.4 Running in Docker

Loko can be run in a Docker container. There is sometimes no need to provide any other
files in the container; Loko Scheme is self-sufficient.

These Docker images are provided:

• ‘weinholt/loko:base’ – Loko Scheme only, a base image.

• ‘weinholt/loko:latest’ – Loko Scheme with Debian GNU/Linux stable.

• ‘akkuscm/akku:loko’ – Loko Scheme with Debian GNU/Linux and the package man-
ager Akku.

2.3 Compiling a program

Loko can compile R6RS top-level programs:

loko --compile hello.sps

The above will compile the R6RS top-level program hello.sps and create the binary
hello, which will run on Linux and bare metal.

To compile an R7RS program:

loko -std=r7rs --compile hello.sps

Libraries are looked up from the LOKO_LIBRARY_PATH environment variable (which is
automatically set by the package manager Akku). The use of eval is disabled by default
to speed up builds, but can be enabled with -feval:

loko -feval --compile hello.sps

The supported targets can be changed with -ftarget=TARGET. The default target is
pc+linux. Other targets are linux for Linux only, netbsd for NetBSD only and pc for
only bare metal.

An additional weird target is provided. It is called polyglot and creates binaries that
run on Linux, NetBSD and bare metal. This is even less useful than it seems and may be
removed in the future.

You can also omit the normal Scheme libraries. If you use -ffreestanding then only
the assembler based runtime is added on top of the libraries that your program uses. This is
useful mostly when you’re working on the compiler. The source distribution has an example
where this is used, samples/hello/just-hello.sps.

You can tune the parameters for the source-level optimizer (cp0). The argument -fcp0-
size-limit=N sets the size limit and -fcp0-effort-limit=N sets the effort limit.

The command line is very inflexible, so try to stick to the fixed argument order for now.

Loko integrates its run-time into the resulting binary and Loko’s source code needs to
be available for compilation to succeed. The location is decided by PREFIX when compiling
Loko, but can be overridden using the LOKO_SOURCE environment variable.

13

3 Library reference

3.1 Standard libraries

The standard R6RS Scheme (https://r6rs.org) libraries are provided. Please see the
documents on the website for the official versions. Unofficial versions of R6RS updated
with errata (https://weinholt.se/scheme/r6rs/) are also available online.

The standard R7RS-small (http://r7rs.org) libraries are provided as well. They are
not available by default in the REPL and need to be imported with e.g. (import (scheme

base)).

3.1.1 SRFI implementations

See the package chez-srfi (https://akkuscm.org/packages/chez-srfi/) for many SRFIs
that work with Loko.

The following SRFIs are provided with Loko.

• (srfi :19 time) – time and date procedures. https://srfi.schemers.org/

srfi-19/srfi-19.html. The copy that exists in chez-srfi is only used up to and
including Loko Scheme 0.6.0.

• (srfi :38 with-shared-structures) – implemented using the usual write procedure.
https://srfi.schemers.org/srfi-38/srfi-38.html.

• (srfi :98 os-environment-variables) – read-only access to environment variables.
Documented at https://srfi.schemers.org/srfi-98/srfi-98.html.

• (srfi :170 posix) – access to common POSIX operations, currently only available on
Linux. Documented at https://srfi.schemers.org/srfi-170/srfi-170.html.

• (srfi :215 logging) – central log exchange. This is used in Loko Scheme as a tar-
get for all kinds of logs, including crashes in fibers and log messages from drivers.
Documented at https://srfi.schemers.org/srfi-215/srfi-215.html.

The package loko-srfi (https://akkuscm.org/packages/loko-srfi/) also provides SR-
FIs. This package is for SRFIs that create too much entanglement through their depen-
dencies to be suitable for either chez-srfi or Loko Scheme proper. At the time of writing it
provides SRFI 106 (basic sockets) for Linux.

3.2 Base library

The (loko) library is automatically loaded into the repl. It provides all exports from the
R6RS libraries, SRFI 98, and the exports shown below. It is intended as a convenient
starting point for the repl user and a place to put features that are expected from a Scheme
implementation, but that do not belong to any other library.

[Procedure]interaction-environment

[Procedure]load filename

[Procedure]include filename
Include code into the program from filename, as if it had been written in the place of
the include form.

https://r6rs.org
https://weinholt.se/scheme/r6rs/
https://weinholt.se/scheme/r6rs/
http://r7rs.org
https://akkuscm.org/packages/chez-srfi/
https://srfi.schemers.org/srfi-19/srfi-19.html
https://srfi.schemers.org/srfi-19/srfi-19.html
https://srfi.schemers.org/srfi-38/srfi-38.html
https://srfi.schemers.org/srfi-98/srfi-98.html
https://srfi.schemers.org/srfi-170/srfi-170.html
https://srfi.schemers.org/srfi-215/srfi-215.html
https://akkuscm.org/packages/loko-srfi/

14 The Loko Scheme Developer’s Manual

[Procedure]void
Returns a void object.

The value that came from nowhere. Even though it has never been standardized, it
is customary for Scheme implementations to use void for (if #f #f), (values) and
the value of set! and other mutating operations.

In Loko Scheme, void objects carry a copy of the program counter.

(list (void))

⇒ (#<void #x21731F>)

[Parameter]library-directories
This parameter is a list of strings that name directories to check when importing
libraries.

Default: (".")

[Parameter]library-extensions
This parameter is a list of strings with file extensions to use when importing libraries.

Default: (".loko.sls" ".sls" ".ss" ".scm")

[Procedure]installed-libraries
For use in the repl. Returns a list of libraries.

[Procedure]uninstall-library name
For use in the repl. Uninstalls the name library.

[Prrocedure]environment-symbols env
The list of symbols defined in the environment env.

[Procedure]expand expr
Expands the expression, returning core forms. The format of the returned forms
should not be relied on.

[Procedure]expand/optimize expr
Expands and optimizes the expression, returning core forms. The format of the
returned forms should not be relied on.

[Parameter]cp0-size-limit
Limits how much the source-level optimizer cp0 will allow the code to grow.

Default: 16

[Parameter]cp0-effort-limit
Limits the effort spent by the source-level optimizer cp0.

Default: 50

[Procedure]disassemble procedure
Print the disassembly of procedure. It is annotated with labels for local jump desti-
nations and some simple code equivalents.

> (disassemble car)

Disassembly for #<procedure car loko/libs/pairs.loko.sls:3224>

Chapter 3: Library reference 15

entry:

206E00 83F8F8 (cmp eax #xFFFFFFF8)

206E03 0F8505000000 (jnz L0)

; (set! rax (car rdi))

206E09 488B47FE (mov rax (mem64+ rdi #x-2))

206E0D C3 (ret)

L0:

206E0E E96DA2FFFF (jmp (+ rip #x-5D93))

[Procedure]machine-type
The machine type that Loko is running on. This is a vector where the first element
is the CPU type amd64 and the second is the system environment (linux, netbsd or
pc).

[Syntax]time expr
Run the procedure thunk once with no arguments and print some numbers of memory
allocation and elapsed time.

[Procedure]time-it what thunk
This is the procedural version of time.

[Procedure]time-it* what iterations thunk
Run thunk repeatedly iterations times and print some bogus statistics. The aim is
that this procedure should be the best way to do micro benchmarks.

Please note that iterations is rounded upwards to some multiple close to the time
stamp counter resolution. This procedure is not meant to be used for long-running
procedures, the typical case is something that takes at most a few dozen cycles, at
most a few thousand.

The code under test should also be compiled ahead of time for the results to reflect
more than the interpreter’s overhead. In the example below, code is not compiled.

> (time-it* "fx+" 10000000 (lambda () (fx+ x 1)))

Timing fx+ to find the minimum cycle time:

New minimum is 1819 cycles with 10000000 iterations to go.

...

New minimum is 234 cycles with 6257346 iterations to go.

The cycle count varied between 234 and 83160784

(Arithmetic mean) µ = 248.75

(Standard deviation) σ = 24.33

(Population variance) σ2 = 592.08

min x_i = µ-.61σ
Used 9736890 samples (263110 outliers discarded).

234

> (time-it* "+" 10000000 (lambda () (+ x 1)))

Timing + to find the minimum cycle time:

New minimum is 1751 cycles with 10000000 iterations to go.

16 The Loko Scheme Developer’s Manual

...

New minimum is 240 cycles with 9968540 iterations to go.

The cycle count varied between 240 and 84141254

(Arithmetic mean) µ = 252.96

(Standard deviation) σ = 30.46

(Population variance) σ2 = 927.82

min x_i = µ-.43σ
Used 9979862 samples (20138 outliers discarded).

240

Note that cp0 will optimize the thunk before it runs, so you may end up benchmarking
something other than what you thought. Check with expand/optimize. If the code
is entered in the REPL then you also measure the overhead of eval.

Modern computers are notoriously difficult to get any consistent results
from. An improvement in cycles could be because the code slightly moved in
memory. See Producing Wrong Data Without Doing Anything Obviously Wrong
(https://john.cs.olemiss.edu/~hcc/researchMethods/notes/localcopy/
mytkowicz-wrong-data.pdf) (2009, Mytkowicz, et al). A more lively view
of the problem is the presentation Performance Matters (https://youtu.be/
r-TLSBdHe1A) (2019, Emery Berger at Strange Loop).

[Procedure]open-output-string
Make a new string output port that accumulates characters in memory. The accu-
mulated string can be extracted with get-output-string.

[Procedure]get-output-string string-output-port
Extract the accumulated string in string-output-port and reset it. Returns the
string.

[Procedure]port-file-descriptor port
Get the file descriptor associated with port. Returns #f if there is no associated file
descriptor.

[Procedure]port-file-descriptor-set! port fd
Set the file descriptor associated with port to fd.

This procedure is primarily intended to allow custom ports to have file descriptors. It
is unspecified whether changing a port’s file descriptor affects the file descriptor used
for subsequent operations on the port.

[Procedure]gensym
Generate an uninterned symbol. These are symbols which are not eq? to any other
symbol.

[Procedure]make-parameter default-value [fender]
Create a new parameter object. Parameters are typically used to implement dynami-
cally scoped variables together with parameterize. A parameter’s current value can
be queried by calling it with no arguments and its value can be modified by calling
it with one argument, the new value.

https://john.cs.olemiss.edu/~hcc/researchMethods/notes/localcopy/mytkowicz-wrong-data.pdf
https://john.cs.olemiss.edu/~hcc/researchMethods/notes/localcopy/mytkowicz-wrong-data.pdf
https://john.cs.olemiss.edu/~hcc/researchMethods/notes/localcopy/mytkowicz-wrong-data.pdf
https://youtu.be/r-TLSBdHe1A
https://youtu.be/r-TLSBdHe1A

Chapter 3: Library reference 17

The optional fender procedure is applied to the value whenever the parameter is
modified. The return value of fender is used in place of the new value. A typical use
of this procedure is to do some type checks on the new value.

[Syntax]parameterize ((name value) . . .) body. . .
Parameterize rebinds the parameter name to value for the dynamic extent of body.
This means that while body is running, name will be set to value. The value is
possibly filtered by a fender procedure.

Whenever the program leaves the body, either by a normal return or a non-local exit
(such as in a guard expression or by calling a continuation created by call/cc), the
value is reset to the value it has outside of the body. If control reenters body, as in a
call to a continuation created inside the body, the parameter will return to the value
established by parameterize.

Although it has the same name, this syntax is a faster variant that is not fully com-
patible with SRFI-39. This variant is very common in Scheme implementations and
matches the one used in e.g. Chez Scheme.

[Procedure]loko-version
The version number of the Loko Scheme runtime. This is a SemVer number and may
include build information in the future.

[Procedure]putenv name value
Set the environment variable name to value. The name is always string.

If the value is a string then the variable is set to that value.

If the value is #f then the variable is removed.

This updates the environment used by SRFI 98 and can also be expected to be visible
to any child processes started after the call.

The strings must not contain any #\nul characters. The name must not contain a
#\= character. These limitations are not checked.

The names and values are always transcoded to/from UTF-8 in the POSIX interfaces.

Please beware that other Scheme implementations commonly leak memory through
this procedure.

[Procedure]collections
The number of garbage collections.

[Syntax]module [name] (exports . . .) body . . .
Define a module. A module is like a library, but it uses an syntax which does not
exist in any RnRS standards. It can also appear inside a library and is commonly
used to hide internal definitions.

It is better to not use this syntax in your own code because it makes your code
non-portable. It is provided for compatibility with other Scheme implementations.

[Procedure]load-program filename
Load and run the R6RS program filename.

[Procedure]pretty-print obj [port]
Writes obj to port using a write-compatible notation. Extra spaces and newlines are
inserted to make the output more readable to a human.

18 The Loko Scheme Developer’s Manual

3.3 Apropos

The (loko apropos) library exports procedures for looking up symbols in environments.

[Procedure]apropos-list name [env]
Search the names of the environment env and all loaded libraries for symbols con-
taining the substring name, which can be a string or a symbol.

If env is omitted then the default is to use the interaction environment.

The returned list contains entries of these formats:

• (library symbol) – this means that library exports the symbol. The library is
loaded, but it may need to be imported.

• symbol – this means that symbol is available in env.

This procedure should be compatible with the similarly named one in Chez Scheme.

[Procedure]apropos name [env]
This is an analogue of the apropos-list procedure that is meant for interactive use.

3.4 Fibers

The (loko system fibers) library exports procedures for fibers. Fibers are a form of
lightweight concurrency based on Concurrent ML. For an overview, see Section 6.1 [Con-
currency], page 27.

[Procedure]spawn-fiber thunk
Create a new fiber that will start running the procedure thunk, which takes no argu-
ments.

[Procedure]make-channel
Create a new channel. Channels are places where two fibers can rendezvous to ex-
change a message. There is no buffering in a channel.

[Procedure]channel? obj
True if obj is a channel.

[Procedure]put-message channel obj
Put the message obj on the channel channel. Blocks until another fiber picks up the
message. Returns unspecified values.

[Procedure]get-message channel
Get a message from the channel channel. Blocks until another fiber has arrived with
a message. Returns the message.

[Procedure]sleep time
Block the fiber for time seconds.

[Procedure]put-operation channel obj
Returns an operation object that represents putting the message obj on the channel
channel.

Chapter 3: Library reference 19

[Procedure]get-operation channel
Returns an operation object that represents getting a message from the channel
channel.

[Procedure]wrap-operation op f
Returns an operation object that is the same as the operation op, except that the
values a wrapped by the procedure f.

[Procedure]sleep-operation seconds
Returns an operation object that represents waiting until seconds have passed from
the time of the call to this procedure.

[Procedure]timer-operation a
Return an operation object that represents waiting until absolute time a (in internal
time units).

[Procedure]choice-operation op . . .
Returns an operation object that represents a choice between the given
operations op If multiple operations can be performed then one is selected
non-deterministically.

It is not an error to call this procedure with no arguments. It is in fact a useful
construction when gathering operations.

If wrap-operation is used on a choice operation then every operation will be wrapped.

[Procedure]perform-operation op
Perform the operation op, possibly blocking the fiber until the operation is ready.

With choice-operation and perform-operation it’s possible to write code that
waits for one of several operations. This can be something simple like waiting for a
message with a timeout:

(perform-operation (get-operation ch) (sleep-operation 1))

This example will wait for a message on the channel ch for up to one second. In order
to distinguish between a message and a timeout, wrap-operation is used:

(perform-operation

(choice-operation

(wrap-operation (get-operation ch) (lambda (x) (cons 'msg x)))

(wrap-operation (sleep-operation 1) (lambda _ 'timeout))))

This code will either return (msg . x) where x is the received message; but if more
than one second passes without a message it returns timeout.

The object returned from choice-operation can be returned from a procedure,
stored in a data structure, sent over a channel, etc.

[Procedure]make-cvar
Make a new condition variable (in Concurrent ML’s terminology). These allow a
program to wait for a condition to be signalled. See the procedures below.

[Procedure]cvar? obj
True if obj is a condition variable.

20 The Loko Scheme Developer’s Manual

[Procedure]signal-cvar! cvar
Signal the condition variable cvar, unblocking any fibers that are waiting for it.

[Procedure]wait cvar
Wait for the condition variable cvar to be signalled, blocking until it is.

[Procedure]wait-operation cvar
Return an operation that represents waiting for the condition variable cvar to be
signalled.

[Procedure]yield-current-task
Yield the current task and and let another fiber run. This is generally not needed
in I/O-bound programs, but is provided to let CPU-bound programs cooperate and
voluntarily let other fibers run.

[Procedure]exit-current-task
Stops the running fiber.

[Procedure]run-fibers init-thunk
Provided for compatibility with Guile. It runs the procedure init-thunk in the fibers
scheduler. This procedure can return earlier in Loko than in does in Guile. Guile
provides it because fibers are not an integrated feature in its runtime, so it needs an
entry point for when to start and stop the fibers facility.

3.5 Unsafe procedures

The (loko system unsafe) library provides raw access to kernel services, linear memory
and I/O bus registers.

[Procedure]syscall n arg . . .
Calls the kernel’s system call number n with the arguments arg Returns a fixnum.

Example fork on Linux amd64:

(when (zero? (syscall 57)) ; __NR_fork

(display "child process\n")

(exit)) ; child become a zombie

Scheme programs should generally not be written directly with syscalls any less than
C programs would do the same. There are usually interactions with the standard
library that should be considered, such as flushing of ports to prevent duplicated
output.

[Procedure]bytevector-address bytevector
Get the linear address of the first byte of bytevector.

The first byte is guaranteed to have an alignment of eight bytes.

A moving garbage collector is used for bytevectors created with make-bytevector.
There is no way to ensure that they do not move during GC, so their addresses should
not be used to perform bus-mastering DMA.

Returns a fixnum.

Chapter 3: Library reference 21

[Procedure]get-mem-u8 addr
[Procedure]get-mem-u16 addr
[Procedure]get-mem-u32 addr
[Procedure]get-mem-s61 addr

Read a u8, u16, u32 or s61, respectively, from linear address addr and return it as a
fixnum.

• If addr is unaligned then an exception is raised.

• On targets where fixnums are not wide enough to hold the result, a bignum will
be used instead, but the bus access will be the correct width.

• Calls to these procedures will not be optimized away or reordered by the compiler.

• Each call corresponds to one memory read instruction of the matching size. For
the signed 61-bit procedure this only applies to targets that can issue 64-bit
memory bus operations.

• These calls may be issued out of order by the processor or go to the cache. This is
usually only a problem when the memory area is backed by RAM. On AMD64 it
is safe to read memory-mapped hardware registers with these procedures thanks
to MTRR. Other situations may require locking instructions or memory barriers.

[Procedure]put-mem-u8 addr n
[Procedure]put-mem-u16 addr n
[Procedure]put-mem-u32 addr n
[Procedure]put-mem-s61 addr n

Write n as a u8, u16, u32 or s61, respectively, to linear address addr.

• If addr is unaligned then an exception is raised.

• Calls to these procedures will not be optimized away or reordered by the compiler.

• Each call corresponds to one memory write instruction of the matching size. For
the signed 61-bit procedure this only applies to targets that can issue 64-bit
memory bus operations.

• These calls may be issued out of order or be merged by the processor. This is
usually only a problem when the memory area is backed by RAM. On AMD64 it
is safe to read memory-mapped hardware registers with these procedures thanks
to MTRR. Other situations may require locking instructions, manual flushes or
memory barriers.

Returns unspecified values.

[Procedure]get-i/o-u8 busaddr
[Procedure]get-i/o-u16 busaddr
[Procedure]get-i/o-u32 busaddr

Read a u8, u16 or u32, respectively, from I/O bus address busaddr and return it as
a fixnum.

The get-i/o-u32 procedure may return a bignum on targets where (<= (fixnum-

width) 32), but the bus access will be 32-bit.

[Procedure]put-i/o-u8 busaddr n
[Procedure]put-i/o-u16 busaddr n

22 The Loko Scheme Developer’s Manual

[Procedure]put-i/o-u32 busaddr n
Write n as a u8, u16 or u32, respectively, to I/O bus address busaddr.

Returns unspecified values.

[Procedure]get-i/o-u8-n! busaddr addr n
[Procedure]get-i/o-u16-n! busaddr addr n
[Procedure]get-i/o-u32-n! busaddr addr n

Read n units of u8, u16 or u32, respectively, from I/O bus address busaddr and write
them to memory starting at linear address addr.

The address addr must be naturally aligned to the size of the writes. Otherwise an
&assertion is raised.

Returns unspecified values.

[Procedure]put-i/o-u8-n busaddr addr n
[Procedure]put-i/o-u16-n busaddr addr n
[Procedure]put-i/o-u32-n busaddr addr n

Write n units of u8, u16 or u32, respectively, to I/O bus address busaddr while reading
them from memory starting at linear address addr.

The address addr must be naturally aligned to the size of the reads. Otherwise an
&assertion is raised.

Returns unspecified values.

3.6 Target libraries

The following Linux-specific libraries are provided. Their usage mirrors 1:1 the functionality
in the Linux manpages, section 2.

• (loko arch amd64 linux-numbers) – constants used in the Linux syscall interface
(UAPI).

• (loko arch amd64 linux-syscalls) – thin wrappers around Linux syscalls.

• (loko arch amd64 netbsd-numbers) – constants used in the NetBSD syscall interface.

• (loko arch amd64 netbsd-syscalls) – thin wrappers around NetBSD/amd64
syscalls.

23

4 Repair instructions

4.1 Tools support

This section describes some tools can be used together with Loko Scheme when things go
wrong.

4.1.1 Disassembly

Loko can be disassembled using any regular disassembler that supports ELF and amd64,
such as the one in GNU binutils and GNU gdb. There is also a built-in disassembler for
procedures, see Section 3.2 [Base library], page 13.

4.1.2 Debugging

Loko can be debugged with GNU gdb (https://www.gnu.org/software/gdb/) with the
help of loko-gdb.py. Stack traces and pretty printing should work. Line information is
currently missing.

Scheme objects can get very big. Limit the output with e.g. set print elements 5.

Traps from the processor are translated into conditions with a &program-counter con-
dition, e.g. this error from trying to evaluate (#f):

The condition has 5 components:

1. &assertion &violation &serious

2. &who: apply

3. &message: "Tried to call a non-procedural object"

4. &irritants: (#f)

5. &program-counter: #x309795

End of condition components.

You can look up the trapping instruction with a disassembler.

4.1.3 Debug logs

The PC port of Loko can have debug logging redirected from the VGA console with the
CONSOLE environment variable:

• CONSOLE=vga prints to the VGA text mode console.

• CONSOLE=com1 prints to COM1 (BIOS’s default baud rate).

• CONSOLE=debug prints to QEMU’s debug console. This is enabled with e.g. -debugcon
vc.

4.1.4 Profiling

Loko on Linux can be profiled with perf (https://perf.wiki.kernel.org/index.php/
Main_Page).

Some micro benchmarks can be done from inside Loko, see Section 3.2 [Base library],
page 13.

https://www.gnu.org/software/gdb/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page

24 The Loko Scheme Developer’s Manual

4.1.5 Memory checking

It’s possible to run Loko in Valgrind (http://valgrind.org/). Valgrind does not support
alignment checking, so Loko will print a warning about that. Loko also does not use the “red
zone”, so Valgrind will think that a lot of what Loko is doing uses uninitialized memory.
Don’t believe it.

4.1.6 Fuzzing

Loko can be used with AFL++ (https://aflplus.plus/). This tool can explore all possi-
ble paths through a program in order to find crashes. You can use it to automatically check
that, e.g., a parser does not crash on any inputs.

The way to use it is to prepare a small program that reads from the standard input
and passes it to the code under test. Build your program with loko -fcoverage=afl++

program.sps. This flag tells Loko to add branch instrumentation for AFL++. There is
some overhead associated with this code, so only use it during fuzzing.

The instrumented binary will mutate a memory area that is shared with afl-fuzz.
Every if expression (including syntax which expands to an if expression) will mutate the
area differently depending on whether the true or the false branch was taken. This should
mean that the area gives a unique fingerprint for each path taken through the program.

When fuzzing a program built with Loko you should normally run the fuzzer with AFL_

CRASH_EXITCODE=70 afl-fuzz -i inputs/ -o outputs/ -- ./program, where inputs is a
directory with files that contain sample inputs.

It makes sense to verify that the interaction between AFL++ and the program is working
as intended and that AFL++ detects crashes. This can be done by introducing an explicit
crash in the program for certain inputs.

A full discussion about AFL++ is out of scope for this manual. Please see the AFL++
website for more reading material.

The instrumentation support has been tested with AFL++ 4.04c.

http://valgrind.org/
https://aflplus.plus/

25

5 Other resources

5.1 Loko Scheme website

The Loko Scheme (https://scheme.fail) website has official release tarballs and an online
copy of the manual.

5.2 Online communities

There are two chat channels available on IRC. They are on the IRC network Libera.Chat
(https://libera.chat) and they are #scheme and #loko. The #scheme channel is for the
whole Scheme community. You will need an IRC client to join these channels.

If you’re more of a forum or mailing list user, then there aren’t any direct options like this
yet. But we have Usenet, which has filled this need even since before there was an Internet.
The community-wide Scheme group is called ‘comp.lang.scheme’. It is accessible via any
Usenet provider, even free ones like Eternal September (http://www.eternal-september.
org/). It is also accessible via one of the big search engine companies.

There is also a community-wide Scheme Wiki at http://community.schemewiki.org.

Another resource that has popped up recently is Discord. There is a Scheme Discord
(https://discord.gg/ZcTYrdx).

5.3 Issue tracker

There may be an issue tracker at GitLab (https://gitlab.com/weinholt/loko), but
please instead use channels where issues nobody cares about can be lost in the mists of
time. You can send bug reports to bugs@scheme.fail.

5.4 Package repositories

There are repositories of packages online where you can find many useful libraries that work
with Loko:

• Akku.scm (https://akkuscm.org/) – an R6RS/R7RS package manager. Akku also
translates R7RS libraries to R6RS to try and make them work with R6RS implemen-
tations.

• Snow (http://snow-fort.org/) – an R7RS package manager. These packages (or
snowballs) are also included in Akku’s repository.

https://scheme.fail
https://libera.chat
https://libera.chat
http://www.eternal-september.org/
http://www.eternal-september.org/
http://community.schemewiki.org
https://discord.gg/ZcTYrdx
https://discord.gg/ZcTYrdx
https://gitlab.com/weinholt/loko
mailto:bugs@scheme.fail
https://akkuscm.org/
http://snow-fort.org/

27

6 Loko internals

6.1 Concurrency

The concurrency in Loko exists at two different levels:

• Loko processes, which are preemptible processes running at the same privilege level
and in the same page table as the Loko runtime.

• Loko fibers, which are lightweight processes that run inside a Loko process. They
are an implementation of Concurrent ML (https://people.cs.uchicago.edu/~jhr/
papers/cml.html).

When Loko starts it immediately sets up a Loko process for the scheduler (also called
pid 0). The boot loader has already created a heap and stack for it. The scheduler is
responsible for starting pid 1, handling interrupts, managing preemption, message passing
between processes and other maintenance tasks. The first scheduler that starts is also
responsible for booting all other processors in the system.

Currently all other processors boot up but stop after initialization. Some work needs to
be done to allocate new scheduler processes for them.

Apart from the scheduler and Loko processes with fibers there are also normal usermode
processes with their own page tables. This is where you can put all your FORTRAN and
C programs.

Fibers are a lightweight concurrency system based on Concurrent ML. The implemen-
tation is heavily inspired by a Andy Wingo’s articles Growing Fibers (https://wingolog.
org/archives/2017/06/27/growing-fibers). and A New Concurrent ML (https://
wingolog.org/archives/2017/06/29/a-new-concurrent-ml). Concurrent ML forms a
fundamental principle for concurrency that can be used to implement higher-level concur-
rency like Go channels or Erlang processes.

For details on how to use fibers in your program, see Section 3.4 [Fibers], page 18.
You can also consult the Guile fibers manual (https://github.com/wingo/fibers/wiki/
Manual) to some extent; it has a lot of background information.

The implementation in Loko is different from Guile fibers in these ways:

• Loko fibers need the import (loko system fibers) rather than (fibers).

• Loko fibers are based on pure call/cc to switch between fibers and the fiber scheduler.
This is mostly because the Loko runtime doesn’t have delimited continuations, but it
made it easier to quickly get the correct semantics for parameters.

• However, basing the implementation on call/cc brings a space leak. It means that
there is some extra overhead from lugging around the unused parts of the continuation
and the dynamic winders. In some programs, this state can potentially grow without
bound. This could be solved without implementing delimited continuations, but extra
support from the runtime is needed either way.

• Loko fibers are not preemptively scheduled. This is because of several reasons, explained
in the next section. This means that you shouldn’t run long-running computations in
a fiber that shares a Loko process with other fibers that need to be responsive (unless
you explicitly yield the fiber every now and then).

https://people.cs.uchicago.edu/~jhr/papers/cml.html
https://people.cs.uchicago.edu/~jhr/papers/cml.html
https://wingolog.org/archives/2017/06/27/growing-fibers
https://wingolog.org/archives/2017/06/27/growing-fibers
https://wingolog.org/archives/2017/06/29/a-new-concurrent-ml
https://wingolog.org/archives/2017/06/29/a-new-concurrent-ml
https://github.com/wingo/fibers/wiki/Manual
https://github.com/wingo/fibers/wiki/Manual

28 The Loko Scheme Developer’s Manual

• Loko fibers in a process do not run in parallel; they are not shared between processors.
The way memory allocation is done in Loko means that two processors can’t manage
the same heap.

XXX: The implementation described above has a broken dynamic-wind. See issue #26
in the bug tracker.

The API is compatible with Guile fibers, so the concurrency parts of a program written
for Guile fibers should work with Loko fibers. The largest exception is Guile’s (fibers

internals) library, which manages fiber schedulers. Loko only has one of those per Loko
process. Another difference is that I/O is non-blocking by default on Loko.

A large part of what makes fibers attractive is that code can be written as if it were non-
concurrent. You’re free to read and write to pipes and network streams without explicitly
dealing with polling for when data is available or when file descriptors are ready for writing.
One of the sample programs is a tiny web-server that spawns a fiber per connected client.

Loko on Linux takes care to set O_NONBLOCK on file descriptors and suspends the current
fiber when syscalls return EAGAIN (also called EWOULDBLOCK). Loko uses epoll to find out
when the file descriptor will be ready.

But Linux does not implement EAGAIN for regular files, so reading from a file can block.
When this happens it prevents other fibers from running. Standard I/O is non-blocking,
but other programs that use the same terminal can either get confused by that and/or turn
it off. Even memory accesses can be blocking on Linux because pages can be swapped out
to disk. (Turning off swap is not a good idea). The binary for your program was mmap’d
by Linux when it got started and unmodified pages can be read back from disk, so Linux
can freely evict the pages from memory. So having anything like a guaranteed responsive
program on Linux is challenging. If anything goes wrong with the disk, all your processes
can end up in uninterruptible sleep.

Loko on bare hardware has no operations that block other fibers from running.

6.1.1 Why fibers are not preemptible

Here’s the excuse. Loko processes can temporarily use registers in such a way that they
contain arbitrary bit patterns. If such a register were to be saved to a continuation object,
the garbage collector would choke on it. Other fibers in the same Loko process use the
same heap, so a fiber can’t simply be suspended and left alone as Loko processes are when
they’re preempted.

One common solution to this problem is that the compiler inserts counters at various
points in the code. These counters are incremented at safe points in the code and are used
to a implement software-based timer interrupts. This solution brings with it some overhead
and needs special care to not ruin the performance of tight loops. It may be done later
unless another solution is found.

6.1.2 Loko processes

The use case for processes is pretty slim at this time, but they are the only way to get
preemptive concurrency.

Loko on Linux currently has a very rudimentary scheduler that can’t handle more than
one process.

Chapter 6: Loko internals 29

6.2 Drivers

A driver is a piece of code that allows for abstract access to a hardware device. In Loko
Scheme they are collected in the drivers directory.

6.2.1 Driver abstractions

A large part of creating drivers is to adapt the hardware to the abstractions used in the rest
of the system. Sometimes this means that the full capabilities of the hardware are hidden.
A serial port supported by a UART may appear as a Scheme input port and an output
port, which will allow you to hook it up to any Scheme code that works with ports. But a
UART can do much more than a Scheme port can. An output port can’t usually control
baud rates or send breaks.

Scheme lacks abstractions for hardware. In the RnRS standards, files and ports are
the only things that work as abstractions for hardware. This is not so bad, because Unix
systems have shown that a lot of hardware can be represented as special files in /dev and
the file descriptors you get when opening the special files.

However, these file descriptors are just handles that let user space communicate with
the driver. Sometimes the communication is through an abstraction layer and sometimes
it goes almost directly to the driver. User space needs to use special syscalls (e.g. ioctl)
to actually do anything interesting that is not a read/write operation.

Drivers for Loko should not be locked in to any particular way of designing the user space
interface. Decisions like that are taken on a different level. This will let developers experi-
ment with different user space designs. Designs like Barrelfish (http://www.barrelfish.
org), where hardware virtualized devices are handed out directly to user space, should be
possible to express.

Drivers in Loko should be written as libraries that provide convenient APIs. These APIs
should provide basic functionality in a way that is common between similar hardware of
the same type. The interfaces will need to be developed over time.

When it is necessary to have concurrency (the most common case for modern devices),
drivers should use channels to communicate with the rest of the system. Concurrent drivers
can start as many fibers as they like. The messages sent on these channels should preferably
be simple objects like vectors, symbols, pairs and fixnums. The messages become part of
the driver API.

6.2.2 Hardware access

Drivers need access to their devices. The way this is done depends on what type of bus the
device is attached to.

Modern PCs have busses that can be probed, like PCI and USB. This process provides
enough information that you can easily detect the type of devices that are on the bus and
how to access them. Hardware tends to appear like a tree-like structure, so it is natural
that a bus driver will pass along a reference to the bus down in the call stack.

Older devices on the PC do not appear on the PCI bus and should be detected and
started by just knowing that they ought to be there because it’s a PC. Most ARM systems
do not come with a PCI bus and have all their devices on addresses that need to be known
ahead of time, but are different between platforms. A popular solution is to use DeviceTree
to encode this information and that is certainly something that should be explored for Loko.

http://www.barrelfish.org
http://www.barrelfish.org

30 The Loko Scheme Developer’s Manual

The major hardware interaction points are:

1. Scanning and configuring the bus; detecting new and removed devices.

2. Setting up access to the device.

3. Interfacing with the device through its registers, channels, etc.

4. Allowing the device to write to system memory.

5. Waiting on interrupts from the device.

The way these things are done depends on the bus. Further documentation is needed.
For now, please consult the source code or ask.

6.2.3 Future directions for drivers

There is an interesting thing that can be done with drivers for PCI devices when eval

uses online compilation. PCI devices can appear anywhere in memory and sometimes even
anywhere in I/O space. Register access can look like this:

(define (driver·pci·uhci dev controller)

;; The UHCI registers are mapped to the location in BAR4

(let ((bar (vector-ref (pcidev-BARs dev) 4)))

;; Disable keyboard and mouse legacy support

(pci-put-u16 dev #xC0 #x0000)

(driver·uhci (if (pcibar-i/o? bar) 'i/o 'mem)

(pcibar-base bar)

(pcibar-size bar)

(pcidev-irq dev)

controller)))

(define (driver·uhci reg-type reg-base reg-size irq controller)

;; Access to the device registers (independent of i/o vs mem)

(define (reg-u8-ref offset)

(assert (fx<? -1 offset reg-size))

(case reg-type

((i/o) (get-i/o-u8 (fx+ reg-base offset)))

((mem) (get-mem-u8 (fx+ reg-base offset)))

(else (assert #f))))

...)

It would be interesting if driver·pci·uhci used eval to compile a specialized version
of the driver where reg-u8-ref (etc.) had been inlined by cp0. After compilation, each
reg-u8-ref call would be a single instruction. Specializing, compiling and starting the
driver can be as simple as this:

(let ((driver·uhci
(eval `(lambda (controller)

(driver-source·uhci ,reg-type ,reg-base

,reg-size ,irq

controller))

(apply environment driver-environment·uhci))))
(driver·uhci controller))

Chapter 6: Loko internals 31

In principle this kind of code would work even today, but the driver would be slowed
down because eval is slow.

The same principle can be applied to embedded systems that use DeviceTree. If a static
DeviceTree is used then this could even be done as part of the build process. If a dynamic
DeviceTree is used (to allow the same kernel to run on different ARM platforms) then
boot time may become an issue. But then drivers could be designed to initially use a non-
specialized driver, call eval asynchronously, and tell the running driver to switch to the
specialized driver when eval has returned.

6.3 Interrupt handling

Loko in essence treats device drivers as communicating sequential processes. IRQs from
devices are treated as primitive messages from the device to the driver. Requests to configure
the device or transfer data between the device and the rest of the system is also done with
messages. Device drivers are not fundamentally different from other Scheme programs.

6.3.1 Historical background

This section uses the term interrupt to denote an interruption in the processor’s normal
execution sequence; IRQ to denote an interrupt from a hardware device and trap to denote
an interrupt from the processor itself. There are more types of interrupts, but they are not
discussed here.

IRQs are handled differently from how they are handled in normal kernels. An anecdote
from The Rise of Worse is Better (https://www.dreamsongs.com/RiseOfWorseIsBetter.
html) by Richard P. Gabriel is relevant here:

Two famous people, one from MIT and another from Berkeley (but working on
Unix) once met to discuss operating system issues. The person from MIT was
knowledgeable about ITS (the MIT AI Lab operating system) and had been
reading the Unix sources. He was interested in how Unix solved the PC loser-
ing problem. The PC loser-ing problem occurs when a user program invokes a
system routine to perform a lengthy operation that might have significant state,
such as IO buffers. If an interrupt occurs during the operation, the state of the
user program must be saved. Because the invocation of the system routine is
usually a single instruction, the PC of the user program does not adequately
capture the state of the process. The system routine must either back out or
press forward. The right thing is to back out and restore the user program PC
to the instruction that invoked the system routine so that resumption of the
user program after the interrupt, for example, re-enters the system routine. It
is called PC loser-ing because the PC is being coerced into loser mode, where
loser is the affectionate name for user at MIT.

The MIT guy did not see any code that handled this case and asked the New
Jersey guy how the problem was handled. The New Jersey guy said that the
Unix folks were aware of the problem, but the solution was for the system
routine to always finish, but sometimes an error code would be returned that
signaled that the system routine had failed to complete its action. A correct
user program, then, had to check the error code to determine whether to simply

https://www.dreamsongs.com/RiseOfWorseIsBetter.html
https://www.dreamsongs.com/RiseOfWorseIsBetter.html

32 The Loko Scheme Developer’s Manual

try the system routine again. The MIT guy did not like this solution because
it was not the right thing.

From the New Jersey guy we get the errno value -EINTR, so he was clearly the more
successful one. The MIT guy’s approach would have been to carefully design syscalls so
that they keep their full state in a structure or in the arguments to the syscall, which is kind
of like doing a very manual and tedious call/cc when an interrupt arrives. And nobody
has time for that.

But when the New Jersey guy feels like even -EINTR is too difficult to manage, we get
uninterruptible sleep. This is a situation where programs aren’t running, but they can’t
be killed either. This happens when a program is blocked in a syscall and is holding an
unknown number of locks and other state in the kernel. Maybe it was reading from a file,
but something got wedged and stopped responding. Instead of an error code, the process is
in uninterruptible sleep. This slowly creeps from program to program as other parties try
to communicate with the frozen process.

So Loko takes a different approach to all this.

6.3.2 An experimental approach to IRQs

IRQs are generated by hardware devices when they want the attention of the processor. An
example is a UART (serial port controller) that has just received a byte. It will generate
an IRQ to get the driver to read the byte from its buffer.

The normal idea of how to handle an IRQ is basically as follows: install the interrupt
service routine (ISR) that comes as part of the driver, reset the device to its normal state,
then enable the IRQ in the interrupt controller. An ISR is a special piece of code that must
be prepared to run at potentially any time (except when interrupts are disabled). Usually
there is a priority order on IRQs so that they can in turn be interrupted by higher-priority
IRQs. Either way, when an IRQ arrives the driver quickly services the hardware. In the
UART example it would read a byte from the UART and place it in a software controlled
buffer.

In this way of doing things, there are unfortunately severe restrictions on what can be
done in an ISR. An ISR runs in interrupt context where many usual kernel services are
simply unavailable. Anything that would block the program is usually unavailable and
access to memory is limited. Arranging things so that arbitrary Scheme code can run in
interrupt context is difficult.

For this reason, Loko does not run driver code in ISRs. The ISRs are instead mini-
mal pieces of code that cooperate with the process scheduler to make the driver’s process
runnable. An IRQ is sent as a message to the process and it handles it at its leisure.

This approach is somewhat experimental, and may have some problems with latency
in legacy hardware such as UARTs, but modern devices do bus mastering DMA and are
generally not sensitive to interrupt servicing latency. Bus mastering DMA means that the
device has access to the system’s memory. Generally such a device cooperates with the
driver to maintain queues in system memory that describes data transfers.

There are pros and cons to Loko’s approach. The cons are that IRQs are handled with
some latency, but this is usually not a problem for modern devices. The pros are that it
makes driver code much easier to write and maintain. Since it eliminates many of the usual
difficulties with writing drivers, it may even mean that most competent Schemers with

Chapter 6: Loko internals 33

access to the hardware programming manual can write device drivers. (Some difficulties
still remain with manual memory management, but they are not that hard to deal with).

Even if latency is a potential problem, Loko’s approach should be good for throughput.
A driver can easily decide that data is coming in at such a high rate that it doesn’t need
to use interrupts, and switch over to periodic polling instead. Linux uses this technique in
its networking stack under the cryptic name "New API" (NAPI).

Another benefit of Loko’s approach is that the dilemma in the "worse is better" story is
resolved. User programs never need to be given an equivalent of -EINTR and the programmer
does not need to manually keep track of where they are in the handling of a system call.

6.3.3 Loko’s use of traps

Loko offloads as much error checking as possible on built-in mechanisms in the hardware.
Instead of using explicit type checks, it lets the hardware do the type checks (where possible).

Programming errors like (/ 1 0) are often signalled by the hardware in most pro-
gramming environments. Loko takes this further and extends it to errors like (car #f),
(vector-ref "foo" 0) and (1 + 2). Loko uses the processor’s alignment checking fea-
ture to trap wrong uses of pairs, procedures, strings, vectors and bytevectors. You can
read more about this in Faster Dynamic Type Checks (https://weinholt.se/articles/
alignment-check/).

6.3.4 Interrupts on bare hardware AMD64

The interrupt handlers are in (loko arch amd64 pc-interrupts) and are written in as-
sembly.

There are two fundamentally different types of interrupts that both go under the name
interrupt and that use similar mechanisms, but have very different sources.

6.3.4.1 Traps

Traps are interrupts that are triggered by some classes of errors in the running program.
For these interrupts the interrupt handlers cause the program to invoke an error handler
written in Scheme. No care is taken to preserve the program’s current stack frame or current
register values, which means that some useful debugging information is lost. While that is
unfortunate, and should be fixed, it is still semantically correct since these errors are all
categorized as &serious.

Traps are handled by entries in the interrupt descriptor table (IDT). The IDT controls
whether the processor should change privilege levels, which address it should jump to, which
stack it should use and whether interrupts should be automatically disabled or not.

The processor pushes some of the program state on the stack and gives control to the
handler. For traps, the handlers identify the cause of the trap and decide which library
function should take control over the program. It then executes a tail-call to that function.
These functions live in (loko arch amd64 lib-traps) and are responsible for calling the
error handler, which is written in Scheme.

6.3.4.2 IRQs

The IRQ handling in Loko relies on the processor’s interrupt stack table (IST) and the
interrupt controller’s specific end of interrupt (SEOI) and special mask mode. On AMD64

https://weinholt.se/articles/alignment-check/
https://weinholt.se/articles/alignment-check/

34 The Loko Scheme Developer’s Manual

systems the SEOI feature is available in the legacy PIC and the APIC (except in early
versions). Interrupt priorities (nesting) are not meant to be used.

Interrupt masking is a very important part of Loko’s IRQ handling. There are three
places where interrupts can be masked: the device itself, the interrupt controller and the
processor. The driver configures the device to generate interrupts in a way that suites the
driver. The interrupt controller is responsible for delivering interrupts to the processor and
can be asked by the processor to mask an interrupt. The interrupt controller also keeps
track of which interrupts are being serviced and temporarily masks them until they are
acknowledged. Finally, the processor can also mask interrupts with the ‘RFLAGS.IF’ bit in
the flags register. When ‘RFLAGS.IF’ is clear, no interrupts are delivered.

Loko’s IRQ handling system relies on masking interrupts with the ‘RFLAGS.IF’ bit and
delaying acknowledgement. ‘RFLAGS.IF’ is used to mask interrupts while the scheduler is
running. When inside the scheduler, interrupts can only happen in one very controlled
circumstance: in the sys_hlt syscall. This is used when no processes are runnable and it
lets the processor save energy. The sys_hlt syscall returns when an IRQ has been delivered
to the processor. The scheduler then finds the driver process that has the IRQ registered,
enqueues it as a message and makes the process runnable.

Normal processes always run with interrupts unmasked, except maybe for some brief
and tricky moments during task switching. When an interrupt arrives, the processor uses
the IST to switch to a different stack. This is necessary to avoid messing up the process’s
Scheme stack. All registers are saved in the process control block so that the process can
be resumed later. The IRQ handler resumes the scheduler and lets it know what happened.

When the process resumes it will have an IRQ number in its message queue. It is up
to the process when it wants to dequeue this message, but usually a driver process will be
waiting for an IRQ to arrive. Whenever a process calls the scheduler it can also receive a
pending message. The two cases are then that a process either becomes runnable due to an
IRQ and that a process is already runnable and will see the IRQ later.

Processes that are notified about IRQs will handle them, doing whatever task is needed
to service the IRQ in the hardware, and afterwards tell the scheduler to acknowledge the
IRQ. The scheduler then sends an instruction to the interrupt controller to acknowledge
that specific interrupt. At this point the device may again choose to generate an interrupt
when the conditions are right.

There are a few classes of programming errors when it comes to IRQ code in drivers. The
driver may decide that it has handled an IRQ and sends an acknowledgement. However, if
it missed an interrupt reason, the device may generate the same IRQ again, immediately
after acknowledgement. This slows down the system with unnecessary work in the driver.

The opposite can also happen if a driver does not properly handle all the interrupt
reasons. The symptom can be that an IRQ arrives, is seemingly handled by the driver, but
then no more IRQs ever arrive and the device seems to have frozen. Which class of error
is more likely depends on if the device uses edge-triggered or level-triggered interrupts. A
way to check if this has happened is to add a timeout when waiting for interrupts.

6.3.4.3 Observed bad IRQ behavior

Loko’s handling of IRQs is experimental, as mentioned. These problems have been observed
so far:

Chapter 6: Loko internals 35

• There are sometimes bytes lost on the PC UARTs.

• Wrong hardware implementations of the i8042 controller (the PS/2 bus chip) seem to
assume that IRQ 1 always interrupts the IRQ 12 handler. This results in keyboard
data being read as mouse data.

• The PIT’s IRQ 0 does not reach the CPU if the scheduler is running. The PIT is not
used normally, so this is not a problem.

The UART and i8042 may need special interrupt handlers. But they are legacy devices
and much amd64 hardware doesn’t even have them.

6.3.5 Interrupts on Linux AMD64

The signal handlers are in (loko arch amd64 linux-start).

Signals under Linux are similar to interrupts. Just like with interrupts, some signals
are traps (‘BUS’, ‘SEGV’, ‘FPE’, ‘ILL’, etc). Linux places the processor’s trap number in the
sigcontext of the signal handler, which makes it easy to handle them identically to the way
traps are handled on bare hardware.

Other signals are from external sources and the program is innocent, so the current
stack frame must be preserved. On bare hardware this is accomplished by the IST and the
equivalent mechanism on Linux is called sigaltstack(2).

The normal userspace ABI, documented in System V Application Binary Interface
AMD64 Architecture Processor Supplement (https://github.com/hjl-tools/
x86-psABI/wiki/X86-psABI), is not followed. Normally interrupts would be delivered on
the same stack as the program is currently using, but that would mess up Scheme code due
to the way Loko manages stack frames. The "red zone" concept does not exist in Loko.

https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI
https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI
https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI

37

Index

A
apropos . 18
apropos-list . 18

B
bytevector-address . 20

C
channel? . 18
choice-operation . 19
collections . 17
cvar? . 19

D
disassemble . 14

E
environment-symbols . 14
EUPL . 2
exit-current-task . 20
expand . 14
expand/optimize . 14

G
gensym . 16
get-i/o-u16 . 21
get-i/o-u16-n! . 22
get-i/o-u32 . 21
get-i/o-u32-n! . 22
get-i/o-u8 . 21
get-i/o-u8-n! . 22
get-mem-s61 . 21
get-mem-u16 . 21
get-mem-u32 . 21
get-mem-u8 . 21
get-message . 18
get-operation . 19
get-output-string . 16

I
include . 13
installed-libraries . 14
interaction-environment . 13

L
license . 2
load . 13
load-program . 17
loko-version . 17

M
machine-type . 15
make-channel . 18
make-cvar . 19
make-parameter . 16
module . 17

O
open-output-string . 16

P
parameterize . 17
perform-operation . 19
port-file-descriptor . 16
port-file-descriptor-set! 16
pretty-print . 17
put-i/o-u16 . 21
put-i/o-u16-n . 22
put-i/o-u32 . 21
put-i/o-u32-n . 22
put-i/o-u8 . 21
put-i/o-u8-n . 22
put-mem-s61 . 21
put-mem-u16 . 21
put-mem-u32 . 21
put-mem-u8 . 21
put-message . 18
put-operation . 18
putenv . 17

R
run-fibers . 20

S
signal-cvar! . 20
sleep . 18
sleep-operation . 19
spawn-fiber . 18
syscall . 20

38 The Loko Scheme Developer’s Manual

T
time . 15

time-it . 15

time-it* . 15

timer-operation . 19

U
uninstall-library . 14

V
void . 14

W
wait . 20
wait-operation . 20
wrap-operation . 19

Y
yield-current-task . 20

	Preface
	Purpose, audience and scope
	Credits
	How to License Loko Scheme

	1 Introduction
	Scheme
	Scheme standards
	Where Loko fits in

	2 Using Loko
	Building Loko
	Cross-compiling
	Loko from a distribution

	Running
	Running under Linux or NetBSD
	Running under KVM (QEMU)
	Running on bare metal
	Network booting

	Running in Docker

	Compiling a program

	3 Library reference
	Standard libraries
	SRFI implementations

	Base library
	Apropos
	Fibers
	Unsafe procedures
	Target libraries

	4 Repair instructions
	Tools support
	Disassembly
	Debugging
	Debug logs
	Profiling
	Memory checking
	Fuzzing

	5 Other resources
	Loko Scheme website
	Online communities
	Issue tracker
	Package repositories

	6 Loko internals
	Concurrency
	Why fibers are not preemptible
	Loko processes

	Drivers
	Driver abstractions
	Hardware access
	Future directions for drivers

	Interrupt handling
	Historical background
	An experimental approach to IRQs
	Loko's use of traps
	Interrupts on bare hardware AMD64
	Traps
	IRQs
	Observed bad IRQ behavior

	Interrupts on Linux AMD64

	Index

